Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Open Vet J ; 14(1): 416-427, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633182

RESUMEN

Background: Acute lung injury (ALI) is a severe condition distinguished by inflammation and impaired gas exchange in the lungs. Staphylococcus aureus, a common bacterium, can cause ALI through its virulence factors. Aloe vera is a medicinal plant that has been traditionally used to treat a variety of illnesses due to its anti-inflammatory properties. Chitosan nanoparticles are biocompatible and totally biodegradable materials that have shown potential in drug delivery systems. Aim: To explore the antibacterial activity of Aloe vera-loaded chitosan nanoparticles (AV-CS-NPs) against S. aureus in vitro and in vivo with advanced techniques. Methods: The antibacterial efficacy of AV-CS-NPs was evaluated through a broth microdilution assay. In addition, the impact of AV-CS-NPs on S. aureus-induced ALI in rats was examined by analyzing the expression of genes linked to inflammation, oxidative stress, and apoptosis. Furthermore, rat lung tissue was scanned histologically. The rats were divided into three groups: control, ALI, and treatment with AV-CS-NPs. Results: The AV-CS-NPs that were prepared exhibited clustered semispherical and spherical forms, having an average particle size of approximately 60 nm. These nanoparticles displayed a diverse structure with an uneven distribution of particle sizes. The maximum entrapment efficiency of 95.5% ± 1.25% was achieved. The obtained findings revealed that The minimum inhibitory concentration and minimum bactericidal concentration values were determined to be 5 and 10 ug/ml, respectively, indicating the potent bactericidal effect of the NPs. Also, S. aureus infected rats explored upregulation in the mRNA expression of TLR2 and TLR4 compared to healthy control groups. AV-CS-NP treatment reverses the case where there was repression in mRNA expression of TLR2 and TLR4 compared to S. aureus-treated rats. Conclusion: These NPs can serve as potential candidates for the development of alternative antimicrobial agents.


Asunto(s)
Lesión Pulmonar Aguda , Aloe , Quitosano , Nanopartículas , Enfermedades de los Roedores , Ratas , Animales , Quitosano/química , Quitosano/farmacología , FN-kappa B/farmacología , Staphylococcus aureus , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Nanopartículas/química , Transducción de Señal , Antibacterianos/farmacología , Lesión Pulmonar Aguda/veterinaria , Inflamación/veterinaria , ARN Mensajero/farmacología
2.
Sci Rep ; 14(1): 6776, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514712

RESUMEN

Given the intricate etiology and pathogenesis of atopic dermatitis (AD), the complete cure of AD remains challenging. This study aimed to investigate if topically applying N-benzyl-N-methyldecan-1-amine (BMDA), derived from garlic, and its derivative [decyl-(4-methoxy-benzyl)-methyl-1-amine] (DMMA) could effectively alleviate AD-like skin lesions in 2,4-dinitrochlorobenzene (DNCB)-treated mice. Administering these compounds to the irritated skin of DNCB-treated mice significantly reduced swelling, rash, and excoriation severity, alongside a corresponding decrease in inflamed epidermis and dermis. Moreover, they inhibited spleen and lymph node enlargement and showed fewer infiltrated mast cells in the epidermis and dermis through toluidine-blue staining. Additionally, they led to a lower IgE titer in mouse sera as determined by ELISA, compared to vehicle treatment. Analyzing skin tissue from the mice revealed decreased transcript levels of inflammatory cytokines (TNF-α, IL-1ß, and IL-6), IL-4, iNOS, and COX-2, compared to control mice. Simultaneously, the compounds impeded the activation of inflammation-related signaling molecules such as JNK, p38 MAPK, and NF-κB in the mouse skin. In summary, these findings suggest that BMDA and DMMA hold the potential to be developed as a novel treatment for healing inflammatory AD.


Asunto(s)
Dermatitis Atópica , Ajo , Anhídridos Maleicos , Animales , Ratones , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/patología , Dinitroclorobenceno/toxicidad , Piel/patología , Citocinas , Aminas/farmacología , FN-kappa B/farmacología , Ratones Endogámicos BALB C
3.
Molecules ; 29(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38398618

RESUMEN

Introduction: Adaptogens are a group of plants that exhibit complex, nonspecific effects on the human body, increasing its ability to adapt, develop resilience, and survive in stress conditions. They are found in many traditional medicinal systems and play a key role in restoring the body's strength and stamina. Research in recent years has attempted to elucidate the mechanisms behind their pharmacological effects, but it appears that these effects are difficult to define precisely and involve multiple molecular pathways. Neuroinflammation: In recent years, chronic inflammation has been recognized as one of the common features of many central nervous system disorders (dementia and other neurodegenerative diseases, depression, anxiety, ischemic stroke, and infections). Because of the specific nature of the brain, this process is called neuroinflammation, and its suppression can result in an improvement of patients' condition and may promote their recovery. Adaptogens as anti-inflammatory agents: As has been discovered, adaptogens display anti-inflammatory effects, which suggests that their application may be broader than previously thought. They regulate gene expression of anti- and proinflammatory cytokines (prostaglandins, leukotriens) and can modulate signaling pathways (e.g., NF-κB). Aim: This mini-review aims to present the anti-neuroinflammatory potential of the most important plants classified as adaptogens: Schisandra chinensis, Eleutherococcus senticosus, Rhodiola rosea and Withania somnifera.


Asunto(s)
Extractos Vegetales , Rhodiola , Humanos , Extractos Vegetales/farmacología , Enfermedades Neuroinflamatorias , Adaptación Fisiológica , Transducción de Señal , FN-kappa B/farmacología
4.
J Physiol Sci ; 74(1): 7, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326739

RESUMEN

Folic acid (FA), with its anti-inflammatory and antioxidant properties, may offer protection against ischemia-reperfusion (IR) injury. This study investigated whether FA safeguards rat kidneys from IR by targeting high mobility group box-1 (HMGB1), a key inflammatory mediator. Fifty adult male Wistar rats were randomly allocated into four groups: control, IR, IR + FA pretreatment, and FA alone. Compared to controls, IR significantly impaired renal function and elevated levels of malondialdehyde, HMGB1, NF-κB, and caspase 3. FA pretreatment effectively reversed these detrimental changes, protecting renal function and minimizing tissue damage. The FA-alone group showed no significant differences compared to the control group, indicating no adverse effects of FA treatment. Mechanistically, FA inhibited HMGB1 expression and its downstream activation of NF-κB and caspase 3, thereby quelling inflammation and cell death. FA shields rat kidneys from IR-induced injury by suppressing HMGB1-mediated inflammation and apoptosis, suggesting a potential therapeutic avenue for IR-associated kidney damage.


Asunto(s)
Proteína HMGB1 , Daño por Reperfusión , Ratas , Masculino , Animales , FN-kappa B/metabolismo , FN-kappa B/farmacología , Ratas Wistar , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacología , Caspasa 3 , Ácido Fólico/farmacología , Inflamación/prevención & control , Riñón/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Suplementos Dietéticos , Reperfusión , Isquemia
5.
J Oral Biosci ; 66(1): 188-195, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278301

RESUMEN

OBJECTIVE: Human ß-defensin 1 (hBD-1) is a antimicrobial peptide that is constantly secreted by oral tissues. Hangeshashinto (HST), a traditional Japanese medicine, has been reported to be effective against stomatitis. This study aimed to clarify the profile of HST by comparing the system of production of interleukin-1α (IL-1α) and hBD-1 in human oral mucosal epithelial cells with dexamethasone (DEX), a steroid used for the treatment of stomatitis. METHODS: Human oral keratinocytes (HOK) were treated with HST, DEX, or HST components (baicalein, baicalin, berberine, and glycyrrhizin) for 24 h, and subsequently cultured for 24 h with or without Pam3CSK4 or lipopolysaccharide (LPS). The cell supernatants, total RNA, and intracellular proteins were collected, and changes in IL-1α and hBD-1 protein production and gene expression were evaluated using ELISA and RT-PCR. The phosphorylation of NF-kB and the cell proliferative ability of HOK were evaluated by western blotting and XTT assay, respectively. RESULTS: DEX (0.01-10 µM) significantly suppressed IL-1α and hBD-1 production induced by either Pam3CSK4 or LPS, and also decreased cell growth. In contrast, HST inhibited Pam3CSK4- and LPS-induced IL-1α production at a concentration range of 12.5-100 µg/mL without affecting the cell proliferative capacity and hBD-1 production of HOK. Baicalein and baicalin, which are flavonoid ingredients of HST, showed anti-IL-1α production. CONCLUSION: HST may be useful as a therapeutic agent for stomatitis and other inflammatory diseases of the oral cavity.


Asunto(s)
Estomatitis , beta-Defensinas , Humanos , beta-Defensinas/genética , Células Cultivadas , Dexametasona/efectos adversos , Interleucina-1alfa/genética , Interleucina-1alfa/efectos adversos , Interleucina-1alfa/metabolismo , Queratinocitos/metabolismo , Lipopolisacáridos/efectos adversos , Lipopolisacáridos/metabolismo , FN-kappa B/metabolismo , FN-kappa B/farmacología , FN-kappa B/uso terapéutico , Estomatitis/inducido químicamente , Estomatitis/tratamiento farmacológico , Estomatitis/metabolismo
6.
Photodermatol Photoimmunol Photomed ; 40(1): e12950, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288763

RESUMEN

AIM: Lithospermum erythrorhizon and Pueraria lobata exhibit promising potential as cosmetic additives for mitigating skin barrier impairment induced by photoaging. Despite their potential, the precise mechanisms underlying their protective and ameliorative effects remain elusive. This study sought to assess the reparative properties of Lithospermum erythrorhizon and Pueraria lobata extracts (LP) on UVB-irradiated human skin keratinocytes (HaCaT cells) and explore the therapeutic potential of LP as a skin barrier protection agent. MATERIALS AND METHODS: Antioxidant activities were gauged through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and reactive oxygen species (ROS) assays. The expression levels of skin barrier-related markers, encompassing metalloproteinases (MMPs) and hyaluronidase (HYAL) were scrutinized using enzyme-linked immunosorbent assay (ELISA), reverse transcriptase (RT)-PCR, and Western blotting, with a particular focus on the involvement of the transforming growth factor (TGF)-ß/Smad and nuclear factor-κB (NF-κB) signaling pathways. RESULTS: The study revealed that LP effectively scavenges free radicals, diminishes ROS production in a dose-dependent manner, and significantly attenuates UVB-induced expression of MMP-1 and MMP-3 through modulation of the hyaluronan synthase (HAS)2/HYAL1 signaling axis in UVB-irradiated HaCaT cells. Additionally, LP demonstrated enhanced TGF-ß signaling activation, fostering procollagen type I synthesis, and concurrently exhibited mitogen-activated protein kinases (MAPK)/NF-κB signaling inactivation, thereby mitigating pro-inflammatory cytokine release and alleviating UVB-induced cellular damage. CONCLUSION: In conclusion, the observed protective effects of LP on skin cellular constituents highlight its substantial biological potential for shielding against UVB-induced skin photoaging, positioning it as a promising candidate for both pharmaceutical and cosmetic applications.


Asunto(s)
Lithospermum , Pueraria , Envejecimiento de la Piel , Enfermedades de la Piel , Humanos , Pueraria/metabolismo , Lithospermum/metabolismo , FN-kappa B/metabolismo , FN-kappa B/farmacología , Especies Reactivas de Oxígeno/metabolismo , Piel/metabolismo , Rayos Ultravioleta/efectos adversos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fibroblastos/metabolismo
7.
Altern Ther Health Med ; 30(2): 171-177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37856812

RESUMEN

Tumor necrosis factor alpha-induced protein-3, also called A20, is a zinc-finger protein that participates in various inflammatory responses; however, the putative relationship between A20 and hepatic fibrosis remains unelucidated. Therefore, we investigated the role and mechanism of action of A20 in activating hepatic stellate cells (HSC) during the progression of hepatic fibrosis. Cell counting kit-8 (CCK8), colony growth, transwell assays, cell cycle analysis, and apoptosis assays were performed to explore the effect of A20 on cell function in vitro. An interspecies intravenous injection of the adeno-associated virus was used to assess the in vivo role of A20. The regulation of A20 on p65 was detected using mass spectrometry and immunoprecipitation. Our findings revealed that A20 was highly expressed in the liver tissues of patients with hepatic fibrosis and that the expression level of A20 in the liver tissue was closely correlated with the stage of liver fibrosis. In the LX-2 cell line, the downregulation of A20 upregulated the expression of fibrosis-related proteins and increased the expression of inflammatory factors, indicating the activation of HSC and vice versa. In addition, overexpression of A20 in mice reduced the degree of liver fibrosis in thioacetamide model mice. Finally, co-immunoprecipitation demonstrated that A20 could interact with p65. Hence, A20 inhibits HSC activation by binding to p65.


Asunto(s)
FN-kappa B , Factor de Necrosis Tumoral alfa , Humanos , Ratones , Animales , FN-kappa B/metabolismo , FN-kappa B/farmacología , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Transducción de Señal , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología
8.
Altern Ther Health Med ; 29(8): 594-600, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37678860

RESUMEN

Background: Since most patients with oral cancer do not benefit from current treatments, new therapeutic strategies or drugs must be developed to improve patient prognosis. Qing Yan Li Ge Tang (QYLGT), a Chinese herbal medicine, is known for its anticancer activity. This study aimed to investigate whether QYLGT has anticancer effects on human OEC-M1 oral cancer cells. Methods: To evaluate whether QYLGT affects viability, morphology, and colony formation ability of the OEC-M1 cells, the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, morphology study, and colony formation assay were performed, respectively. Each assay was carried out in triplicate, and the whole set of experiments was performed three times independently. To investigate whether QYLGT induces apoptotic effects in OEC-M1 cells, the enzyme-linked immunosorbent (ELISA) was carried out to quantify cytokeratin 18 fragment (an apoptosis marker). Each assay was carried out in triplicate, and the whole set of experiments was performed three times independently. The immunoblotting assay was performed to detect the protein expression after QYLGT treatment. The whole set of experiments was performed two times independently. Results: The results from the MTT and colony formation assays indicate that QYLGT inhibited the cell viability and clonogenic growth capacity of OEC-M1 cells. The morphology study shows that QYLGT increased plasma membrane blebbing in OEC-M1 clles. The results of ELISA and an immunoblotting assay show that QYLGT increased cytokeratin 18 fragment release and poly ADP-ribose polymerase cleavage (another apoptosis marker) in OEC-M1 cells. In addition, the results from immunoblotting assay show that QYLGT also activated apoptotic executor proteins, including caspase-8, caspase-9, and caspase-3, and the results of ELISA indicate that treatment with the pan-caspase inhibitor, Z-VAD-FMK, inhibited QYLGT-induced cytokeratin 18 fragment release. These results indicate that QYLGT inhibited cell viability in OEC-M1 cells and induced OEC-M1 apoptosis through caspase activation. Additionally, QYLGT-activated c-Jun N-terminal kinase, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and nuclear factor-kappa B (NF-κB), and the related inhibitors, including SP600125, PD184352, SB202190, and Bay11-7082, were used to confirm which signaling was involved in QYLGT-induced apoptosis. Moreover, only Bay11-7082, the NF-κB inhibitor, could suppress QYLGT-induced the release of cytokeratin 18 fragments from OEC-M1 cells. Conclusions: QYLGT induced apoptosis in OEC-M1 cells via the NF-κB pathway.


Asunto(s)
Neoplasias de la Boca , FN-kappa B , Humanos , FN-kappa B/metabolismo , FN-kappa B/farmacología , Queratina-18/farmacología , Apoptosis , Neoplasias de la Boca/tratamiento farmacológico , Línea Celular Tumoral
9.
Adv Rheumatol ; 63(1): 27, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37370181

RESUMEN

BACKGROUND: Previous studies has shown that nucleotide-binding and oligomerization domain-containing protein 2 (NOD2) is expressed in Fibroblast-like synoviocytes (FLSs) of rheumatoid arthritis (RA) patients which is stimulated by muramyl dipeptide (MDP) present in the joint environment and induces inflammation via the NF-κB pathway. Also, other studies have shown that curcumin inhibits proliferation, migration, invasion, and Inflammation and on the other hand increases the apoptosis of RA FLSs. In this study, we aim to evaluate the effect of curcumin, a natural anti-inflammatory micronutrient, on the expression of NOD2 and inflammatory cytokines. METHODS: Synovial membranes were collected from ten patients diagnosed with RA and ten individuals with traumatic injuries scheduled for knee surgery. The FLSs were isolated and treated with 40 µM curcumin alone or in combination with 20.3 µM MDP for 24 h. mRNA was extracted, and real-time PCR was performed to quantitatively measure gene expression levels of NOD2, p65, IL-6, TNF-α, and IL-1ß. RESULTS: The study findings indicate that administering MDP alone can significantly increase the mRNA expression levels of IL-6 and IL-1ß in the trauma group and TNF-α in the RA group. Conversely, administering curcumin alone or in combination whit MDP can significantly reduce mRNA expression levels of P65 and IL-6 in FLSs of both groups. Moreover, in FLSs of RA patients, a single curcumin treatment leads to a significant reduction in NOD2 gene expression. CONCLUSION: This study provides preliminary in vitro evidence of the potential benefits of curcumin as a nutritional supplement for RA patients. Despite the limitations of the study being an investigation of the FLSs of RA patients, the results demonstrate that curcumin has an anti-inflammatory effect on NOD2 and NF-κB genes. These findings suggest that curcumin could be a promising approach to relieve symptoms of RA.


Asunto(s)
Artritis Reumatoide , Curcumina , Sinoviocitos , Humanos , FN-kappa B/metabolismo , FN-kappa B/farmacología , FN-kappa B/uso terapéutico , Citocinas , Curcumina/farmacología , Curcumina/uso terapéutico , Curcumina/metabolismo , Factor de Necrosis Tumoral alfa , Interleucina-6/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Inflamación/tratamiento farmacológico , Antiinflamatorios , Fibroblastos/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/farmacología , ARN Mensajero/uso terapéutico , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Adaptadora de Señalización NOD2/farmacología
10.
Arch Environ Occup Health ; 78(5): 289-303, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36876577

RESUMEN

Chromium (Cr) is an environmental pollutant, has high redox potential, and can exist in various oxidation states, possibly leading to nephrotoxicity. As a potential treatment option, Fagonia indica (F. indica) is an herb remedy traditionally used as a phytomedicine to cure ailments. However, efficient validation of its protective effect and molecular mechanisms has not yet been established. As such, this study aims to investigate the protective effect of F. indica against Cr-induced nephrotoxicity in Swiss mice. Mice were divided into five groups: group I (negative control), group II (F. indica), group III (potassium dichromate [PDC]-treated), group IV (PDC + saline), and group V (PDC + F. indica). Our results demonstrate that group III exhibited decreases in superoxide dismutase (SOD), glutathione s-transferases (GST), glutathione peroxidase (GSH-Px), catalase (CAT), and thioredoxin peroxidase (TPX) levels. Meanwhile, protein carbonyl (PCO) and malondialdehyde (MDA) levels increased in kidney homogenates, increasing the expression of the pro-inflammatory cytokine interleukin-6 (IL-6). This was followed by elevated NF-κB, blood urea nitrogen (BUN), and creatinine serum levels in group III compared with group I. Moreover, histopathological and immunohistochemical examinations demonstrated severe damage to the renal tubular epithelial cells, as well as marked congestion and expressions of caspase-3 and NF-κB. Further, group V showed an improvement in antioxidant activity parameters and reductions in the IL-6, caspase-3, and NF-κB expressions, followed by significant decreases in NF-κB, BUN, and creatinine serum levels. Furthermore, fewer histopathological disturbances were observed compared with untreated group III. Such alterations may be attributed to the antioxidant and anti-inflammatory effects of F. indica. Therefore, our exploration reveals that F. indica is effective in protecting against Cr-induced nephrotoxicity, and it could be applied in the future to human kidney diseases caused by environmental pollutants.


Asunto(s)
Antioxidantes , Citocinas , Ratas , Humanos , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Caspasa 3 , Citocinas/metabolismo , FN-kappa B/metabolismo , FN-kappa B/farmacología , Interleucina-6/metabolismo , Interleucina-6/farmacología , Creatinina/farmacología , Ratas Wistar , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/farmacología
11.
Ultrason Sonochem ; 95: 106355, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36898250

RESUMEN

The pro-inflammation activity of litchi thaumatin-like protein (LcTLP) led to be responsible for the occurrence of adverse reactions after excessive consumption of litchi. This study aimed to characterize the changes in the structure and inflammatory activity of LcTLP induced by ultrasound treatment. Significant molecular structure of LcTLP changes occured at 15 min ultrasound treatment, and then tended to recover with subsequent treatment. Secondary structure (α-helices decreased from 17.3% to 6.3%), tertiary structure (the maximum endogenous fluorescence intensity decreased), and microstructure (mean hydrodynamic diameter reduced from 4 µm to 50 nm) of the LcTLP treated for 15 min (LT15) were significantly affected, which led to the inflammatory epitope of LcTLP (domain II and V-cleft) unfolded. In vitro, LT15 had a significant anti-inflammatory response, which inhibited NO production and had the best effect at 50 ng/mL in RAW264.7 macrophages (73.24%). Moreover, proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) secretion and mRNA expression levels were also significantly lower compared with untreated LcTLP (p < 0.05). Western blot further confirmed that the expressions of IκB-α, p65, p38, ERK and JNK reduced markedly (p < 0.05), which indicated LT15 inhibited the inflammatory response through NF-κB and MAPK transduction pathways. Overall, it can be hypothesized that LT15 exposed to low frequency ultrasonic fields have a direct effect on the protein surface structure and thus on the entry of LT15 into cells, making 15-minute ultrasound treatment potentially useful in reducing the pro-inflammatory properties of litchi or related liquid products.


Asunto(s)
Litchi , FN-kappa B , FN-kappa B/metabolismo , FN-kappa B/farmacología , Transducción de Señal , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Ultrasonido , Macrófagos , Citocinas/metabolismo , Citocinas/farmacología
12.
Plant Foods Hum Nutr ; 78(2): 299-306, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36826691

RESUMEN

Smilax china L. is an important herb used in traditional Chinese medicine. In this study, the mechanism of Smilax china L. polyphenols (SCP) on insulin resistance and anti-obesity in mice induced by a high-fat diet (HFD) was investigated. Fifty female mice were randomly divided into five groups: control, HFD and low, medium, and high doses of SCP for 70 d. SCP significantly decreased intraperitoneal adipose tissue index, body weight gain, liver lipids, and serum inflammatory factor levels. Blood glucose and insulin concentrations, as well as insulin resistance index in SCP, were significantly lower than those in HFD. In addition, SCP markedly up-regulated the gene expression of glucose transporter 4 (GLUT4), insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), serine-threonine kinase (AKT), Acyl-CoA oxidase (ACO), and protein kinase A (PKA), and down-regulated the expression of mammalian target of rapamycin complex 1 (mTORC1), sterol-responsive element-binding protein-1c (SREBP1c), fatty acid synthase (FAS), 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR), and forkhead box protein O1 (FOXO1). SCP significantly increased the protein expression of AKT, GLUT4, AMP-activated protein kinase (AMPK), phosphorylated-AMPK (p-AMPK), phosphorylated-AKT (p-AKT), and uncoupling protein 1 (UCP-1), and decreased the expression of SREBP1c, FAS, HMGCR, phosphorylation of IKBα (p-IKBα), and nuclear factor kappa B subunit p65 (P65) in the liver. Overall, SCP effectively reduced HFD-induced insulin resistance and obesity in mice, partly through NF-κB and IRS/AKT-AMPK signaling pathways to regulate inflammatory factors. Therefore, SCP may improve lifestyle diseases.


Asunto(s)
Resistencia a la Insulina , Smilax , Ratones , Animales , FN-kappa B/metabolismo , FN-kappa B/farmacología , Dieta Alta en Grasa/efectos adversos , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Smilax/metabolismo , Polifenoles/farmacología , Polifenoles/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/etiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/farmacología , Hígado , Transducción de Señal/fisiología , China , Ratones Endogámicos C57BL , Mamíferos/metabolismo
13.
Altern Ther Health Med ; 29(3): 32-42, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36689357

RESUMEN

Context: Atherosclerosis (AS) is a chronic inflammatory disease. Pyroptosis is a newly discovered, pro-inflammatory cell death that can trigger and amplify the occurrence and progression of AS. Researchers are still uncertain about the anti-atherosclerotic mechanism of "fibronectin type III domain-containing protein 5" (FNDC5). Objective: The study aimed to investigate the ability of FNDC5-mediated, "peroxisome proliferator activated receptor alpha" (PPARa) to inhibit oxidized low-density lipoprotein (ox-LDL)-induced, THP-1-derived macrophage pyroptosis and to determine a potential molecular mechanism at the cellular level. Design: The research team performed a laboratory study. Setting: The study took place in the Department of Cardiovascular Medicine at the Affiliated Hospital of Guzhou Medical University at the Medical Research Institute at Guizhou Medical University in Guiyang, Guizhou, China. Outcome Measures: The research team: (1) constructed and stably transfected FNDC5 gene-overexpressing and FNDC5 gene-silencing lentiviral vectors into THP-1 cells; (2) observed the cell morphology under an inverted fluorescence microscope and screened the stably transfected THP-1 cells with puromycin; (3) verified the transfection efficiency using quantitative real-time polymerase chain reaction (qRT-PCR) and Western Blot; (4) used phorbol to induce THP-1 cells into macrophages; (5) cultured the THP-1-derived macrophages with different concentrations of ox-LDL-25, 50, 75, and 100 µg/ml-for 24 h; (6) performed Hoechst 33342/ propidium iodide (PI) double staining and examined lactate dehydrogenase (LDH) and interleukin-1 beta (IL-1ß) activity to determine the effects of ox-LDL on THP-1-derived macrophage pyroptosis; (7) selected the optimal ox-LDL concentration; (8) divided the THP-1-derived macrophages into seven groups: NC group (no ox-LDL intervention), ox-LDL group, PBS group, Mock1 group, Ad-FNDC5 group, Mock2 group, and Sh-FNDC5 group; (9) examined the expressions of functional proteins and the pyroptosis of THP-1-derived macrophages, including FNDC5, PPARa, and "nuclear factor kappa-light chain enhancer of activated B cells P65" (NF-κB P65), and those related to the pyroptosis pathway, using Western Blot and Hoechst 33342/PI double staining, respectively; (10) treated the THP-1-derived macrophages with FNDC5 expression with GW6471, a specific PPARα antagonist; (11) determined the expressions of functional proteins and the pyroptosis of THP-1-derived macrophages, including FNDC5, PPARa, and NF-κB P65, and those related to the pyroptosis pathway, using Western Blot and Hoechst 33342/PI double staining and detection of the LDH and IL-1ß activity, respectively. Results: With the stably transfected THP-1 cells with FNDC5 overexpression or silencing the ox-LDL-induced, THP-1-derived, macrophage pyroptosis occurred in a concentration-dependent manner. Compared with the ox-LDL, phosphate buffered saline (PBS), Mock1, and Mock2 groups, the Ad-FNDC5 group had a significant increase in expression of FNDC5 and of peroxisome proliferator activated receptor alpha (PPARa) proteins (P < .05). The "nuclear factor kappa-light chain enhancer of activated B cells P65: (NF-κB P65), NOD-like receptor thermal protein domain associated protein 3, (NLRP3), Caspase-1, gasdermin D (GSDMD, IL-1ß and IL-18 protein expressions, percentage of PI-positive cells, LDH activity, and IL-1ß activity decreased significantly (P < .05); the results in the Sh-FNDC5 group were opposite to those in the Ad-FNDC5 group. 3. Intervention with GW6471 (PPARa antagonist) in the stably transfected THP-1-derived macrophages with FNDC5 overexpression abolished the protective effect of FNDC5 against ox-LDL-induced THP-1-derived macrophage pyroptosis. Conclusions: Irisin/PPARa inhibited THP-1-derived macrophage pyroptosis and inflammation and delayed AS by inhibiting the NF-κB/NLRP3 pathway.


Asunto(s)
FN-kappa B , PPAR alfa , Humanos , FN-kappa B/metabolismo , FN-kappa B/farmacología , PPAR alfa/metabolismo , PPAR alfa/farmacología , Piroptosis , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fibronectinas/metabolismo , Fibronectinas/farmacología , China , Macrófagos/metabolismo
14.
Biomed Pharmacother ; 160: 114308, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36709599

RESUMEN

BACKGROUND: Alcohol abuse triggers neuroinflammation, leading to neuronal damage and further memory and cognitive impairment. Few satisfactory advances have been made in the management of alcoholic central nervous impairment. Therefore, novel and more practical treatment options are urgently needed. Butyrate, a crucial metabolite of short-chain fatty acids (SCFAs), has been increasingly demonstrated to protect against numerous metabolic diseases. However, the impact of butyrate on chronic alcohol consumption-induced central nervous system (CNS) lesions remains unknown. METHODS: In this study, we assessed the possible effects and underlying mechanisms of butyrate on the attenuation of alcohol-induced CNS injury in mice. Firstly, sixty female C57BL/6 J mice were randomly divided into 4 groups: pair-fed (PF) group (PF/CON), alcohol-fed (AF) group (AF/CON), PF with sodium butyrate (NaB) group (PF/NaB) and AF with NaB group (AF/NaB). Each group was fed a modified Lieber-DeCarli liquid diet with or without alcohol. After six weeks of feeding, the mice were euthanized and the associated indicators were investigated. RESULTS: As indicated by the behavioral tests and brain morphology, dietary NaB administration significantly ameliorated aberrant behaviors, including locomotor hypoactivity, anxiety disorder, depressive behavior, impaired learning, spatial recognition memory, and effectively reduced chronic alcoholic central nervous system damage. To further understand the underlying mechanisms, microglia-mediated inflammation and the associated M1/M2 polarization were measured separately. Firstly, pro-inflammatory TNF-α, IL-1ß, and IL-6 in brain and peripheral blood circulation were decreased, but IL-10 were increased in the AF/NaB group compared with the AF/CON group. Consistently, the abnormal proportions of activated and resting microglial cells in the hippocampus and cortex regions after excessive alcohol consumption were significantly reduced with NaB treatment. Moreover, the rectification of microglia polarization (M1/M2) imbalance was found after NaB administration via binding GPR109A, up-regulating the expression of PPAR-γ and down-regulating TLR4/NF-κB activation. In addition to the direct suppression of neuroinflammation, intriguingly, dietary NaB intervention remarkably increased the levels of intestinal tight junction protein occludin and gut morphological barrier, attenuated the levels of serum lipopolysaccharide (LPS) and dysbiosis of gut microbiota, suggesting that NaB supplementation effectively improved the integrity and permeability of gut microecology. Finally, the neurotransmitters including differential Tryptophan (Trp) and Kynurenine (Kyn) were found with dietary NaB administration, which showed significantly altered and closely correlated with the gut microbiota composition, demonstrating the complex interactions in the microbiome-gut-brain axis involved in the efficacy of dietary NaB therapy for alcoholic CNS lesions. CONCLUSION: Dietary microbial metabolite butyrate supplementation ameliorates chronic alcoholic central nervous damage and improves related memory and cognitive functions through suppressing microglia-mediated neuroinflammation by GPR109A/PPAR-γ/TLR4-NF-κB signaling pathway and modulating microbiota-gut-brain axis.


Asunto(s)
Eje Cerebro-Intestino , Microglía , Ratones , Femenino , Animales , Enfermedades Neuroinflamatorias , FN-kappa B/farmacología , Receptor Toll-Like 4 , Receptores Activados del Proliferador del Peroxisoma , Ratones Endogámicos C57BL , Etanol/toxicidad , Ácido Butírico/farmacología
15.
Altern Ther Health Med ; 29(2): 64-69, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36580668

RESUMEN

Context: The poorly understood regulatory mechanisms impede gastric cancer therapy. Kruppel-like factors (KLFs) are associated with the development of various tumors, The studies on the role of the KLF transcription factor 13 (KLF13) in gastric cancer progression haven't been studied. Objective: The current study aimed to investigate the role of KLF13 in the migration and invasion of gastric cancer and the regulatory mechanism of KLF13 in gastric cancer progression. Design: The research team performed a laboratory study. Setting: The study took place at the Zengcheng District People's Hospital of Guangzhou in Zengcheng, China. Participants: In addition to using normal gastric cells, GES1, and seven gastric cancer cell lines, the research team compared the fresh, gastric cancer tissues (T) and paired, adjacent, noncancerous gastric tissues (ANT) from eight patients undergoing surgical resection at the hospital. The research team also downloaded the data for 33 gastric cancer tissues and adjacent, normal gastric tissues from the Cancer Genome Atlas' TCGA database. Intervention: The research team used: (1) short hairpin RNAs (shRNAs) to knock down KLF13, (2) wound healing and transwell invasion analyses to determine the effects of KLF13 on the migration and invasion of gastric cancer, and (3) a Luciferase reporter assay to determine the effects of KLF13 on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity. Results: KLF13 was upregulated in gastric cancer cells and tissues, and the patients with a high KLF13 expression had poor outcome. Downregulation of KLF13 significantly inhibited the migration and invasion of gastric cancer cells. Mechanistically, downregulation of KLF13 significantly inhibited NF-κB activity, and its targets such as: (1) snail family transcriptional repressor 1 (SNAI1 or Snail), (2) snail family transcriptional repressor 2 (SNAI2 or Slug), (3) zinc finger e-box binding homeobox 1 (ZEB1), (4) Smad interacting protein 1 (Sip1), (5) twist family basic helix-loop-helix (BHLH) transcription factor (Twist), (6) matrix metallopeptidase 2 (MMP2), and (7) MMP9. Tumor necrosis factor alpha (TNF-α) can activate NF-κB. Treating with TNF-α can reverse the effects of KLF13 downregulation on migration and invasion, confirming that KLF13 promotes the migration and invasion of gastric cancer cells through activating the NF-κB pathway. Conclusions: KLF13 promoted the migration and invasion of gastric cancer cells through activating the NF-κB pathway, providing a new target for gastric cancer therapy.


Asunto(s)
FN-kappa B , Neoplasias Gástricas , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , FN-kappa B/farmacología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Factor de Necrosis Tumoral alfa/farmacología , Transducción de Señal , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/farmacología , Línea Celular Tumoral , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/farmacología , Proliferación Celular
16.
Drug Chem Toxicol ; 46(1): 69-76, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34894956

RESUMEN

The aim of this study was to investigate the molecular, biochemical, and histopathological effects of bromelain, which has antioxidant and anti-inflammatory properties, against cisplatin-induced ocular toxicity. The groups were designed as (1) Control, (2) Cisplatin (7 mg/kg, intraperitoneally), (3) Cisplatin + Bromelain (50 mg/kg, orally for 14 consecutive days), (4) Cisplatin + Bromelain (100 mg/kg, orally for 14 consecutive days). The activity of total antioxidant capacity (TAC) and total oxidant status (TOS) and levels of reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), interleukin-1ß (IL-1ß), IL-10, nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α) and 8-OHdG were measured in ocular tissue. The mRNA expression of NF-κB and Caspase-3 was also evaluated. Also, ocular sections were evaluated histopathologically. Bromelain demonstrated a dose-dependent protective effect in cisplatin-induced toxicity by regulating oxidative stress, inflammation, and tissue damage. Our results suggested that bromelain may be a potential adjuvant that can protect the eye from cisplatin-induced toxicity.


Asunto(s)
Antioxidantes , Cisplatino , Humanos , Cisplatino/toxicidad , Antioxidantes/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , FN-kappa B/farmacología , Bromelaínas/toxicidad , Bromelaínas/metabolismo , Neuropatía Óptica Tóxica , Estrés Oxidativo , Inflamación/inducido químicamente , Inflamación/prevención & control , Factor de Necrosis Tumoral alfa/metabolismo
17.
Molecules ; 27(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36500313

RESUMEN

Natural products are being targeted as alternative anticancer agents due to their non-toxic and safe nature. The present study was conducted to explore the in vitro anticancer potential of Justicia adhatoda (J. adhatoda) leaf extract. The methanolic leaf extract was prepared, and the phytochemicals and antioxidant potential were determined by LCMS analysis and DPPH radical scavenging assay, respectively. A docking study performed with five major alkaloidal phytoconstituents showed that they had a good binding affinity towards the active site of NF-κB. Cell viability assay was carried out in five different cell lines, and the extract exhibited the highest cytotoxicity in MCF-7, a breast cancer cell line. Extract-treated cells showed a significant increase in nitric oxide and reactive oxygen species production. Cell cycle analysis showed an arrest in cell growth at the Sub-G0 phase. The extract successfully inhibited cell migration and colony formation and altered mitochondrial membrane potential. The activities of superoxide dismutase and glutathione were also found to decrease in a dose-dependent manner. The percentage of apoptotic cells was found to increase in a dose-dependent manner in MCF-7 cells. The expressions of caspase-3, Bax, and cleaved-PARP were increased in extract-treated cells. An increase in the expression of NF-κB was found in the cytoplasm in extract-treated cells. J. adhatoda leaf extract showed a potential anticancer effect in MCF-7 cells.


Asunto(s)
Neoplasias de la Mama , Género Justicia , Humanos , Femenino , Género Justicia/química , Metanol/química , FN-kappa B/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células MCF-7 , Hojas de la Planta , Apoptosis
18.
Molecules ; 27(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36144523

RESUMEN

Toona sinensis (A. Juss.) Roem is an edible medicinal plant that belongs to the genus Toona within the Meliaceae family. It has been confirmed to display a wide variety of biological activities. During our continuous search for active constituents from the seeds of T. sinensis, two new acyclic diterpenoids (1-2), together with five known limonoid-type triterpenoids (3-7), five known apotirucallane-type triterpenoids (8-12), and three known cycloartane-type triterpenoids (13-15), were isolated and characterized. Their structures were identified based on extensive spectroscopic experiments, including nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectra (HR-ESI-MS), and electronic circular dichroism (ECD), as well as the comparison with those reported in the literature. We compared these findings to those reported in the literature. Compounds 5, 8, and 13-14 were isolated from the genus Toona, and compounds 11 and 15 were obtained from T. sinensis for the first time. The antidiabetic nephropathy effects of isolated compounds against high glucose-induced oxidative stress and inflammation in rat glomerular mesangial cells (GMCs) were assessed in vitro. The results showed that new compounds 1 and 2 could significantly increase the levels of Nrf-2/HO-1 and reduce the levels of NF-κB, TNF-α, and IL-6 at concentrations of 30 µM. These results suggest that compounds 1 and 2 might prevent the occurrence and development of diabetic nephropathy (DN) and facilitate the research and development of new antioxidant and anti-inflammatory drugs suitable for the prevention and treatment of DN.


Asunto(s)
Nefropatías Diabéticas , Limoninas , Triterpenos , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Nefropatías Diabéticas/tratamiento farmacológico , Glucosa/farmacología , Hipoglucemiantes/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Interleucina-6/farmacología , Limoninas/farmacología , Limoninas/uso terapéutico , Células Mesangiales , FN-kappa B/farmacología , Estrés Oxidativo , Ratas , Semillas , Terpenos/farmacología , Terpenos/uso terapéutico , Toona , Triterpenos/química , Factor de Necrosis Tumoral alfa/farmacología
19.
Microbiol Spectr ; 10(5): e0149422, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36129300

RESUMEN

Antibiotic-resistant bacteria have become a public health problem. Thus, antimicrobial peptides (AMPs) have been evaluated as substitutes for antibiotics. Herein, we investigated PN5 derived from Pinus densiflora (pine needle). PN5 exhibited antimicrobial activity without causing cytotoxic effects. Based on these results, we examined the mode of action of PN5 against Gram-negative and -positive bacteria. PN5 exhibited membrane permeabilization ability, had antimicrobial stability in the presence of elastase, a proteolytic enzyme, and did not induce resistance in bacteria. Bacterial lipopolysaccharide (LPS) induces an inflammatory response in RAW 264.7 macrophages. PN5 suppressed proinflammatory cytokines mediated by NF-κB and mitogen-activated protein kinase signaling. In C57BL/6J mice treated with LPS and d-galactosamine, PN5 exhibited anti-inflammatory activity in inflamed mouse livers. Our results indicate that PN5 has antimicrobial and anti-inflammatory activities and thus may be useful as an antimicrobial agent to treat septic shock caused by multidrug-resistant (MDR) Escherichia coli without causing further resistance. IMPORTANCE Antibiotic-resistant bacteria are a global health concern. There is no effective treatment for antibiotic-resistant bacteria, and new alternatives are being suggested. The present study found antibacterial and anti-inflammatory activities of PN5 derived from Pinus densiflora (pine needle), and further investigated the therapeutic effect in a mouse septic model. As a mechanism of antibacterial activity, PN5 exhibited the membrane permeabilization ability of the toroidal model, and treated strains did not develop drug resistance during serial passages. PN5 showed immunomodulatory properties of neutralizing LPS in a mouse septic model. These results indicate that PN5 could be a new and promising therapeutic agent for bacterial infectious disease caused by antibiotic-resistant strains.


Asunto(s)
Antiinfecciosos , Choque Séptico , Ratones , Animales , Escherichia coli , Lipopolisacáridos , Péptidos Antimicrobianos , FN-kappa B/farmacología , FN-kappa B/uso terapéutico , Ratones Endogámicos C57BL , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Choque Séptico/tratamiento farmacológico , Antiinfecciosos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Bacterias , Galactosamina/farmacología , Galactosamina/uso terapéutico , Elastasa Pancreática/farmacología , Elastasa Pancreática/uso terapéutico , Péptido Hidrolasas/farmacología , Péptido Hidrolasas/uso terapéutico , Citocinas , Proteínas Quinasas Activadas por Mitógenos , Pruebas de Sensibilidad Microbiana
20.
Molecules ; 27(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36144661

RESUMEN

This present study aimed to delineate Rumex hastatus D. Don crude extract (Rh.Cr), n-Hexane, ethyl acetate, aqueous fractions (Rh.n-Hex, Rh.ETAC, Rh.Aq) and rutin for antidiarrheal, antisecretory effects, anti-spasmodic, gastrointestinal transient time, anti H. pylori, antiulcer effects, and toxicology. The preliminary phytochemical analysis of Rumex hastatus showed different phytoconstituents and shows different peaks in GC-MC chromatogram. Rumex hastatus crude extract (Rh.Cr), fractions, and rutin attributed dose-dependent (50-300 mg/kg) protection (0-100%) against castor oil-induced diarrhea and dose-dependently inhibited intestinal fluid secretions in mice. They decreased the distance traversed by charcoal in the gastrointestinal transit model in rats. In rabbit jejunum preparations, Rh.Cr and Rh.ETAC caused a concentration-dependent relaxation of both spontaneous and K+ (80 mM)-induced contractions at a similar concentration range, whereas Rh.n-Hex, rutin, and verapamil were relatively potent against K+-induced contractions and shifted the Ca2+ concentration-response curves (CRCs) to the right, Rh.Cr (0.3-1 mg/mL) and Rh.ETAC (0.1-0.3 mg/mL) shifted the isoprenaline-induced inhibitory CRCs to the left. Rh.n-Hex, Rh.ETAC and rutin showed anti-H. pylori effect, also shows an inhibitory effect against H+/K+-ATPase. Rumex hastatus showed gastroprotective and antioxidant effects. Histopathological evaluation showed improvement in cellular architecture and a decrease in the expression of inflammatory markers such as, cyclooxygenase (COX-2), tumor necrosis factor (TN,F-α) and phosphorylated nuclear factor kappa B (p-NFƙB), validated through immunohistochemistry and ELISA techniques. In RT-PCR it decreases H+/K+-ATPase mRNA levels. Rumex hastatus was found to be safe to consume up to a dose of 2000 mg/kg in a comprehensive toxicity profile. Docking studies revealed that rutin against H+/K+-ATPase pump and voltage-gated L-type calcium channel showed E-values of -8.7 and -9.4 Kcal/mol, respectively. MD simulations Molecular Mechanics Poisson Boltzmann surface area and molecular mechanics Generalized Born surface area (MMPBSA/GBSA) findings are consistent with the in-vitro, in-vivo and docking results.


Asunto(s)
Enfermedades Gastrointestinales , Rumex , Animales , Ratones , Conejos , Ratas , Adenosina Trifosfatasas , Antidiarreicos/química , Antioxidantes/farmacología , Canales de Calcio Tipo L , Aceite de Ricino , Carbón Orgánico/farmacología , Ciclooxigenasa 2 , Enfermedades Gastrointestinales/tratamiento farmacológico , Isoproterenol/farmacología , Yeyuno , FN-kappa B/farmacología , Parasimpatolíticos/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , ARN Mensajero , Rumex/química , Rutina/farmacología , Factores de Necrosis Tumoral , Verapamilo/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA